По теме форума "Космос и живые организмы".
Живые организмы провели 1,5 года в открытом космосе
Бактерии с прибрежной скалы провели полтора года в космосе на внешней обшивке модуля МКС
Несколько камней с колониями бактерий на них были отколоты от скалы на побережье Великобритании. Затем эти камни доставили на МКС и закрепили на внешней платформе европейского модуля Columbus. Там они провели 553 дня, подверженные всем «прелестям» открытого космоса: гигантским перепадам температур, радиации и вакууму. После возвращении на Землю оказалось, что часть микроорганизмов выжила и впоследствии смогла размножиться. В 2008 году на орбиту Земли были доставлены микроорганизмы, живущие на обычном камне на побережье Великобритании. Их закрепили на внешней обшивке МКС. Бактерии провели в открытом космосе 553 дня… И часть из них выжила! Теория панспермии получила еще один аргумент. Кроме того, значительно расширилась “область выживания” в космосе, в которой ученые теперь могут рассчитывать найти жизнь.
Колебания температуры в несколько сотен градусов, жесткое излучение, вакуум, в котором мгновенно испаряется любая жидкость — всё это обычные условия открытого космоса. И вот, оказывается, что все эти условия способны длительное время выдерживать земные организмы.
Эксперимент по изучению воздействия открытого космоса на живые организмы проводится не в первый раз. Например, в 2001-2002 гг. немецкие ученые подготовили эксперимент для российского космического спутника “Фотон”. На его борту были помещены миллионы спор бактерий, которые в течение двух недель подверглись различным комбинациям всех факторов открытого космоса. Оказалось, что когда бактерии укрыты в небольших количествах глины, песчаника и метеоритной пыли, то процент их выживаемости довольно велик. Т.е. первый шаг к обоснованию гипотезы панспермии (возможности переноса жизни с одного космического тела на другое) с помощью метеоритов был сделан.
В другом эксперименте на борту космической лаборатории “Фотон-М2” было установлено, что выжить в открытом космосе могут и такие сложные живые организмы, как лишайники. И, наконец, отдельный эксперимент продемонстрировал выживаемость в сверхэкстремальных условиях космоса животных: одномиллиметровых беспозвоночных тихоходок.
Но все это были краткосрочные эксперименты. Теперь же эксперимент с микроорганизмами в космосе длился время, которого было бы достаточно для перелета от Марса к Земле.
Выжившие в открытом космосе микробы OU-20 (Gloeocapsa)
В открытый космос были отправлены фотосинтезирующие цианобактерии, принадлежащие к роду Gloeocapsa (их вид временно обозначили как OU-20). Эти микроорганизмы отличают толстые стенки клеток (см. верхнее фото). Кроме того, они могут формировать плотные колонии, в центре которых повышается шанс защититься от ультрафиолета и вакуума (нижнее фото). Наконец, как и у многих других экстремофилов (выживающих, например, в Антарктиде), у них должен хорошо функционировать ремонт ДНК.
Эксперимент с полуторагодовым пребыванием на внешней обшивке МКС подготовили ученые из Открытого Университета Великобритании. Исходным материалом для него послужили несколько камней с обычной скалы рядом с деревней Бир.
Исследователей интересовало вовсе не воздействие враждебной среды на скалы: поверхность камней покрывали колонии микроорганизмов. И вот, к удивлению даже авторов опыта, оказалось, что многие испытуемые остались в живых. Они уже возвращены на Землю и процветают в одной из лабораторий Открытого университета.
Это первый случай, когда испытание успешно перенесли фотосинтезирующие цианобактерии. Вид микробов-космонавтов пока не идентифицирован (условно его назвали OU-20), но учёные склоняются к тому, что он принадлежит роду Gloeocapsa.
Одна из участниц проекта Карен Олссон-Френсис рассказала, что подобные эксперименты призваны отобрать самые выносливые микробы, которые могли бы пригодиться людям в дальних космических полётах и в колониях на других планетах. Такие бактерии потенциально способны утилизировать отходы в системах жизнеобеспечения или добывать полезные вещества из грунта и горных пород.
Впрочем, как именно микробы ухитрились вынести воздействие открытого пространства – биологи пока не знают. Есть лишь первые предположения. Скажем, у выживших бактерий толстая клеточная стенка. Это одна из возможных причин повышенной стойкости данных организмов.
Ещё один автор эксперимента — Чарльз Кокелл — говорит: «Gloeocapsa формируют колонии из нескольких клеток, которые, вероятно, защищают бактерии в центре от воздействия ультрафиолетового излучения и дают некоторое сопротивление к высыханию».
Также учёные связывают данный вид с некоторыми сородичами-экстремофилами из Антарктики и пустынь и по аналогии с ними предполагают, что у OU-20 хорошо работает ремонт ДНК.
Во всех экспериментах с живыми организмами в открытом космосе исследователи заранее не представляли – выживут ли микроорганизмы, и какой вид сумеет это сделать. В космос отправлялись земные породы с многообразным сообществом клеток без предварительного анализа, а далее их судьбу вверяли естественному отбору.
Теперь же британские естествоиспытатели могут продолжить проверку бактерий на выносливость в экстремальных условиях, изначально обращаясь к уже зарекомендовавшему себя штамму. А это может привести к следующей порции открытий.
Пока же научный мир (и в особенности сторонники теории панспермии) ожидают начала эксперимента LIFE (Living Interplanetary Flight Experiment), который должен состояться в рамках российской космической программы «Фобос-грунт». 30 организмов 10 видов (эукариоты, бактерии и археи) должны будут проделать путь от Земли до орбиты Марса, побывать на его спутнике Фобос и вернуться обратно. Старт этого большого путешествия намечен на 2011 год…
(источник – RU, источник – EN)
Добавлено (24.01.2011, 11:07)
---------------------------------------------
NASA нашло пришельцев среди нас
На долгожданной пресс-конференции NASA было официально объявлено об обнаружении совершенно нехарактерной для Земли формы жизни.
Представители Космического агентства США рассказали о подробностях исследования, проведенного в соленом калифорнийском озере Моно. Там астробиологи нашли бактерии, которые способны использовать ядовитый мышьяк вместо фосфора, "встраивая" его даже в молекулы ДНК.
"Теориями альтернативной биохимии для жизни активно спекулируют научные фантасты. И до сих пор жизненные формы, использующие мышьяк в качестве строительного материала, были исключительно плодом фантазии писателей, но теперь мы точно знаем, что такие формы жизни существуют", - заявил Карл Пилчер, директор Института астробиологии NASA.
Авторы сенсационного открытия, Фелиса Вольф-Саймон и ее коллеги, впервые представили доказательства того, что один из этих ключевых элементов, от которых зависят живые организмы на Земле, - фосфор - может заменяться мышьяком, по крайней мере, у одного вида бактерий, обнаруженных ими в соленом озере на востоке Калифорнии.
Исследователи выращивали микроорганизмы, которые извлекли из донных отложений озера в специально подготовленной среде со всеми необходимыми питательными веществами, исключая фосфор. При этом ученые постоянно пересаживали бактерии в среду со все более высокой концентрацией мышьяка, чтобы заставить их использовать его вместо фосфора.
Предполагалось, что вскоре все микроорганизмы в этой среде погибнут. Однако через некоторое время биологи обнаружили в экспериментальной среде вполне жизнеспособные организмы. Внимательное изучение бактерии из семейства Halomonadaceae, с помощью методов масс-спектрометрии показало, что мышьяк заменил фосфор в ДНК и других жизненно важных молекулах.
Эти формы жизни могут населять объекты на холодных окраинах Солнечной системы, например, на спутниках Сатурна или Юпитера, выразил мнение Стивен Беннер - почетный член Фонда прикладной молекулярной эволюции, финансирующего работы в области биохимии.
"Реакционная способность мышьяка, негативно влияющая на стабильность биологических молекул при комнатной температуре, может оказаться полезной в том случае, если функции должны выполняться при низких температурах, таких, например, как на спутниках гигантских планет", - заявил Беннер, выступая на пресс-конференции в штаб-квартире NASA.
Все известные до сих пор формы жизни используют шесть важнейших химических элементов - углерод, водород, азот, кислород, фосфор и серу. Фосфор является главным элементом биологического топлива - аденозинтрифосфорной кислоты (АТФ), а также фосфолипидов, из которых построены клеточные мембраны.